gongjigongyi.com

与米乐m6网页版登录入口代表实时聊天。 工作时间:上午 9:00 - 下午 5:00(太平洋标准时间)。

电话

致电我们

工作时间:上午9:00-下午5:00(太平洋标准时间)

下载

下载手册、产品技术资料、软件等:

下载类型
型号或关键字

反馈

Why do I measure an offset current from an unbiased photomultiplier tube (PMT)?

问题:

Why do I measure an offset current from an unbiased photomultiplier tube (PMT)?

答案:

Why do I measure an offset current from an unbiased photomultiplier tube (PMT)?

All of Keithley's newer picoammeters and electrometers use a feedback ammeter configuration. For this type of ammeter to work properly, the source resistance of the device-under-test must be greater than the feedback resistance of the ammeter. As the source resistance decreases below the value of the feedback resistance, the voltage gain of the amplifier increases significantly and any input voltage offset or noise will be amplified and appear as a large offset current on the meter display. PMTs generally have a very high source resistance that makes a picoammeter or electrometer the ideal measurement instrument to use with them. However, for observing higher speed phenomena with an oscilloscope or other instrument, some PMT designs include a resistor (commonly 50 ohms) across the output to increase its frequency response. If you connect a PMT with such an output resistor to a feedback ammeter, then you will likely see the large offset you observed.

Check your PMT documentation to determine if it has an output resistor, or use an ohmmeter or DMM to measure it yourself. You can sometimes remove this resistor, which will enable you use your picoammeter or electrometer without the apparent offset. On the other hand, if you leave the resistor in place, it effectively converts the current signal to a voltage signal that you can measure with a DMM or other suitable instrument.

For more information about electrometers, picoammeters and photomultiplier tube measurements, refer to Keithley's Low Level Measurements Handbook.


此常见问题适用于:

产品系列: Keithley 6400 系列皮安表

产品:

常见问题 ID 71776

查看所有常见问题 »